
J
H
E
P
0
9
(
2
0
0
8
)
0
0
8

Published by Institute of Physics Publishing for SISSA

Received: June 27, 2008

Accepted: August 16, 2008

Published: September 1, 2008

The flavor of the composite pseudo-goldstone Higgs
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Abstract: We study the flavor structure of 5D warped models that provide a dual de-

scription of a composite pseudo-Goldstone Higgs. We first carefully re-examine the flavor

constraints on the mass scale of new physics in the standard Randall-Sundrum-type sce-

narios, and find that the KK gluon mass should generically be heavier than about 21 TeV.

We then compare the flavor structure of the composite Higgs models to those in the RS

model. We find new contributions to flavor violation, which while still are suppressed by

the RS-GIM mechanism, will enhance the amplitudes of flavor violations. In particular,

there is a kinetic mixing term among the SM fields which (although parametrically not

enhanced) will make the flavor bounds even more stringent than in RS. This together

with the fact that in the pseudo-Goldstone scenario Yukawa couplings are set by a gauge

coupling implies the KK gluon mass to be at least about 33 TeV. For both the RS and

the composite Higgs models the flavor bounds could be stronger or weaker depending on

the assumption on the value of the gluon boundary kinetic term. These strong bounds

seem to imply that the fully anarchic approach to flavor in warped extra dimensions is

implausible, and there have to be at least some partial flavor symmetries appearing that

eliminate part of the sources for flavor violation. We also present complete expressions for

the radiatively generated Higgs potential of various 5D implementations of the composite

Higgs model, and comment on the 1 − 5 percent level tuning needed in the top sector to

achieve a phenomenologically acceptable vacuum state.
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1. Introduction

Warped extra dimensions models were introduced by Randall and Sundrum (RS) [1] as

an attempt to solve the hierarchy problem by making use of the warp factor to lower

the natural scale of particle masses. In the original model, all SM fields were localized

on the TeV brane. By the AdS/CFT duality, this corresponds to a situation where a

strongly coupled 4D conformal field theory spontaneously breaks conformality at the TeV

scale, creates a mass gap (confines), and produces the SM fields as approximately massless

composites. One consequence of this scenario is the CFT cannot be flavor invariant, since it

is supposed to produce the Yukawa couplings among the SM fields. In such a case, however,
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the CFT is also expected to generate higher-dimensional flavor violating operators with

only a TeV suppression, which would be disastrous from the phenomenological point of

view. Phrased in the 5D language this question is why generic TeV localized four-fermion

operators are suppressed by some high scale, rather than the local cut-off scale which is a

few TeV.

This severe flavor problem can be avoided by instead considering setups with the SM

gauge fields and fermions in the bulk, and only the Higgs sharply localized on the TeV

brane [2 – 4]. In this case the SM fermions can be thought of as mixtures of elementary and

composite fermions. The amount of mixing is determined by the profile of the 5D wave

function of the fermions: the more peaked they are close to the Planck brane, the more

elementary are these fields. This sheds some light on the flavor puzzle as well: Although

the Yukawa couplings generated by the CFT are indeed all O(1) and non-diagonal, the

fermion masses and the CKM angles depend also on the amount of mixing of the elementary

fermions with the CFT that is assumed to be small for the first two generations [3 – 5]. Most

importantly, this implies that flavor violation in the SM is also suppressed by the same

mixing factors - the fact that goes under the name of the RS-GIM mechanism [4, 6, 7],

see also [8, 9]. RS-GIM is successful in suppressing most of the dangerous flavor-changing

neutral currents (FCNC) [6], although it is not enough to sufficiently suppress new physics

contributions to CP violation in the kaon sector [11, 10].

Although the RS set-up explains the origin of the large MPL/TeV hierarchy, there

still remains the little hierarchy problem, which amounts to the question why the Higgs

boson is much lighter than a few TeV. In RS, the Higgs is realized as a scalar field localized

on the TeV brane, of which the 4D dual interpretation is that Higgs a composite state

of the CFT. In that case, its mass would naturally be at the CFT scale of a few TeV,

which would effectively produce a Higgsless model of the sort considered in [12]. One way

to obtain a light composite Higgs is by making it a pseudo-Goldstone boson (pGB) of a

global symmetry [13], similarly as in little Higgs models [14]. The 5D holographic version

of this scenario are the models of gauge-Higgs unification (GHU) [15], where the Higgs

boson is identified with the fifth component of a bulk gauge field (A5) [16]. The Higgs

potential is radiatively generated (with the largest contributions due to the top and gauge

multiplets) and fully calculable. The most promising scenario of this kind is based on the

SO(5) gauge group in the bulk, broken spontaneously to SO(4) on the TeV brane [17], and

with an implementation of a discrete parity symmetry to control corrections to the Zbb̄

vertex [18]. This is the minimal scenario that passes the stringent electroweak precision

tests.

Thus, GHU provides us with the Higgs sector that allows one to address both the

large and the little hierarchy problem. It is a natural question to ask how this dynamical

realization of the Higgs boson affects the flavor structure and the RS-GIM mechanism.

This is the subject of this paper.

Perhaps not surprisingly, the flavor structure of GHU turns out to be quite similar to

that in RS. However, there are some important differences, that affect the flavor bounds.

The gauge symmetry must be larger than in RS (to include broken generators that give rise

to the pseudo-Goldstone Higgs degrees of freedom), which results in a different embedding
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of the SM fermion into the bulk representation. In particular, one SM fermion must be

embedded in several bulk multiplets. This induces a new effect not present in RS, namely

that, in the original flavor basis, the various fermionic generations are mixed via kinetic

terms. This kinetic mixing is a new source of flavor violation in GHU which is always non-

zero (as long as the CKM mixing is reproduced). Even though the kinetic mixing respects

the RS-GIM mechanism, it results in an enhancement of the flavor violating operators. As

a consequence, the bounds on the scale of the extra dimensions from flavor physics turn

out to be more stringent compared to the RS case.

This paper is organized as follows: in section 2 we review the flavor structure and

the RS-GIM mechanism of ordinary RS models with gauge and fermions in the bulk and

the Higgs on the TeV brane. We reevaluate the bounds on the mass of the KK gluon

and find it has to be ≥ 22 TeV for anarchic Yukawa couplings. In section 3 we review

the basics of the GHU models and then define three different realizations based on the

SO(5) gauge symmetry in the bulk. Before investigating the flavor structure, we study

the constraints on the parameter space of these models imposed by the requirement of

correct electroweak symmetry breaking. In section 4 we calculate the Higgs potential for

the three SO(5) models. We re-emphasize that one of the parameters of the top sector has

to be tuned at the 1-5 percent level to end up with a realistic scenario, which is a new

guise of the little hierarchy problem specified to GHU models. These relations among the

parameters of the model are then used as an input in our studies of the flavor bounds.

Section 5 contains our main results. There we present the flavor structure of the SO(5)

models under investigation, and pinpoint new sources of flavor violation. We estimate the

magnitude of flavor and CP violation induced by the KK gluon exchange and illustrate our

analytical estimates by numerical scans over the parameter space allowed by electroweak

symmetry breaking. We conclude with some remarks on future directions of GHU in light

of our findings.

2. Flavor in RS

The original motivation for considering warped extra dimension was the solution to the

hierarchy problem of the Higgs sector. It was quickly realized that the set-up also has

the potential to explain simultaneously the SM flavor structure. Starting with completely

anarchic Yukawa coupling of the Higgs and the 5D fermions, the large SM fermion mass

hierarchies can be explained by different localization the SM fermions in the extra dimen-

sion [3, 4, 19], implementing the split fermion scenario of [20]. Small mixing angles of the

CKM matrix are a natural consequence of this scenario [5]. Moreover, this way of gener-

ating flavor mass hierarchies automatically implies a certain amount of suppression of the

dangerous flavor changing, which is referred to as the RS-GIM mechanism. In this section

we will review the flavor bounds on the generic RS models with anarchic flavor structure.

This will provide us with a reference point for our study of the flavor bounds in the GHU

models.

We specify the background metric to be AdS5 space. We parametrize the space-time
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by the conformal coordinates

ds2 =

(

R

z

)2

(dxµdxνη
µν − dz2) , (2.1)

where the AdS curvature is R, and the coordinate z of the extra dimension runs between

R < z < R′, z = R corresponding to the UV (Planck) brane and z = R′ to the IR (TeV)

brane. R′/R ∼ 1016 sets the large hierarchy between the Planck and the TeV scale.

We consider here the standard RS scenario with custodial symmetry [21] (this is always

what we mean when we refer to RS in the following). The bulk gauge group SU(3)C ×
SU(2)L × SU(2)R ×U(1)X and the Higgs field transforming as (1, 2, 2)0 is localized on the

TeV brane. The fermionic content includes three copies of Ψi
q, i = 1 . . . 3, transforming as

(2, 1)1/6 , and 3 copies each of Ψi
u,d in (1, 2)1/6. Each of these fields are 5D bulk Dirac spinors

and have a bulk mass term which is customarily parametrized by using the c-parameters,

(

R

z

)4
[

ciq
z

Ψ̄i
qΨ

i
q +

ciu
z

Ψ̄i
uΨi

u +
cid
z

Ψ̄i
dΨ

i
d

]

. (2.2)

From now on we drop the generation index i; all fermions should always be understood

as three-vectors in the generation space. The boundary conditions on the UV and the IR

brane are chosen as

Ψq =
(

q[+,+]
)

Ψu =

(

uc[−,−]

d̃c[+,−]

)

Ψd =

(

ũc[+,−]

dc[−,−]

)

(2.3)

where [±] denotes the right(left)-chirality of a bulk fermion vanishing on the brane. The SM

quark doublets are realized as zero-modes q, while the singlets up and down-type quarks

are zero modes of uc and dc, respectively. We write it as

q(x, z) → χq(z)qL(x) uc(x, z) → ψu(z)uR(x) dc(x, z) → ψd(z)dR(x) (2.4)

where χq(z) and ψu,d(z) are the zero mode profiles that are obtained by solving the equa-

tions of motion. A normalized left-handed zero-mode profile is given by

χc(z) = R′−1/2
( z

R

)2 ( z

R′

)−c
f(c), ψc(z) = R′−1/2

( z

R

)2 ( z

R′

)c
f(−c) . (2.5)

We have introduced the standard RS flavor function f(c), which is given by

f(c) =

√
1 − 2c

[

1 − (R′

R )2c−1
]

1

2

. (2.6)

We also introduce 3×3 diagonal matrices fc that are constructed from f(ci) of three genera-

tions, for example fq = diag(f(cq1
), f(cq2

), f(cq3
)). For the choice of the c-parameters that

reproduce the SM mass hierarchies the matrices fq,−u,−d are exponentially hierarchical.

The masses of the zero modes come from the IR brane-localized Yukawa interactions.

After the Higgs field acquires a vev, the Yukawa terms lead to IR localized mass terms for

the bulk fermions,

Ly = − v√
2
(R4/R′3)

(

ΨqỸuΨu + ΨqỸdΨd

)

+ h.c. (2.7)
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value at 3TeV

m̄u 0.00075 . . . 0.0015

m̄c 0.56 ± 0.04

m̄t 136.2 ± 3.1

m̄d 0.002 . . . 0.004

m̄s 0.047 ± 0.012

m̄b 2.4 ± 0.04

Table 1: MS quark masses in GeV at 3 TeV. We have taken the ranges and low-energy values

from PDGLive [22] and used LO renormalization equations with the appropriate number of flavors

for the rescaling. At 30TeV, the masses m̄i are about 11% smaller.

The brane Yukawa couplings Ỹu,d are assumed to be anarchic — random matrices with

elements O(1), no hierarchy and O(1) determinant.

Inserting the zero mode profiles into the mass terms in eq. (2.7) we obtain the SM

mass matrices

mSM
u =

v√
2
fqỸuf−u,

mSM
d =

v√
2
fqỸdf−d, (2.8)

From this point on the usual SM prescription applies. We diagonalize the up and down

mass matrices by mSM
u,d = UL u,dmu,dU

†
R u,d, where U ’s are unitary and mu,d are diagonal,

and we rotate the zero modes to the mass eigenstate basis, for example dL(x) → UL ddL(x).

The left rotations yield the CKM matrix, VCKM = U †
L uUL d.

Even though the Yukawa matrices are anarchical, the hierarchical matrices fc introduce

the hierarchy into the mass matrix elements.

This will result in the hierarchy of the eigenvalues:1

(mu,d)ii ∼
v√
2
Y∗fqi

f−ui,di
(2.9)

where Y∗ is the typical amplitude of the entries in the Yukawa matrices. One can also show

that the diagonalization matrices themselves are hierarchical [5]:

|UL ij | ∼
fqi

fqj

, |UR ij| ∼
f−u,di

f−u,dj

, i ≤ j. (2.10)

We also get that |VCKM|ij ∼ fqi
/fqj

, thus the hierarchy in the CKM matrix elements is

purely set by the cq parameters. From experiment we know that the hierarchy of the CKM

matrix is of the form

VCKM ∼







1 − λ2

2 λ λ3

λ 1 − λ2

2 λ2

λ3 λ2 1






(2.11)

1Here and in the following, the quark masses are understood as running masses at the scale at which

the extra dimension is integrated out. We choose the scale of the extra dimension to be 3TeV. In table 1

we collect all input values at this scale.
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where λ ∼ sin θC ∼ 0.2. This fixes the hierarchy among the fqi
’s to be [5]

fq2
/fq3

∼ λ2, fq1
/fq3

∼ λ3. (2.12)

The values of f−u,−d are then fixed by requiring that the correct fermion mass hierarchy is

reproduced, implying the following relations (assuming f−u3
∼ O(1)):

f−d3
∼ mb

mt
, f−u2

∼ mc

mt

1

λ2
, f−d2

∼ ms

mt

1

λ2
, f−u1

∼ mu

mt

1

λ3
, f−d1

∼ md

mt

1

λ3
. (2.13)

Thus, the RS set-up leads to a neat explanation of the SM flavor structure. However, one

potentially worrisome feature of higher-dimensional models is the presence of the new KK

states, whose masses are in the TeV range (as long as the hierarchy problem is addressed).

These new states generically have flavor non-universal couplings and will contribute to

flavor-changing neutral currents.

The largest contribution to flavor changing neutral currents is generated via the ex-

change of heavy gauge bosons, in particular the strongest constraint arises from the ex-

change of the KK gluons. In order to calculate the effective four-Fermi operators we first

need to determine the couplings gx of the zero-modes to the KK gluons,

gij
L,uū

i
LγµG

µ(1)uj
L + gij

L,dd̄
i
LγµG

µ(1)dj
L + (L→ R) (2.14)

Below we discuss the contribution of the lightest KK gluon but, as we show in appendix A,

it is possible to sum up the contribution of the entire gluon KK tower. The profile of the

first KK gluon can be approximated by G(1)(z) ≃
√

2
J1(x1)

√
RR′

zJ1(x1z/R
′) with x1 being

the first zero of the Bessel function, J0(x1) = 0. Using this and the zero mode profiles

we can determine the couplings in eq. (2.14). In the original flavor basis the couplings are

diagonal and well approximated by

gx ≈ gs∗

(

− 1

logR′/R
+ f2

x γ(cx)

)

. (2.15)

where gs∗ is the bulk SU(3) gauge couplings, and γ(c) =
√

2x1

J1(x1)

∫ 1
0 x

1−2cJ1(x1x)dx ≈
√

2x1

J1(x1)
0.7

6−4c .
2 The couplings would be flavor universal if fx ∼ 13×3. However, this not

the case in the RS scenario where the fx are non-degenerate. This is the main source of

flavor violation in RS. Going to the mass eigenstate basis, we have to rotate the couplings

appropriately,

gL,u,d → U †
L u,dgqUL u,d gR,u,d → U †

R u,dg−u,−dUR u,d (2.16)

The rotation introduces non diagonal couplings which lead to tree level contributions to

∆F = 2 processes. Nevertheless, the rotation matrices are hierarchical, with the hierarchy

set by the same fx that controls the SM fermion hierarchies. The off-diagonal KK gluon

couplings are of order

(gL,q)ij ∼ gs∗fqi
fqj

(gR,u)ij ∼ gs∗f−ui
f−uj

(gR,d)ij ∼ gs∗f−di
f−dj

(2.17)

2The function γ(c) is a correction to the approximation used in [6] which can be sizable, e.g. γ(−0.4) ≈

0.52, γ(0.5) ≈ 1.16, γ(0.7) ≈ 1.52. In numerical calculations we always use the full overlap integral.
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The off-diagonal couplings of the quark doublets are suppressed by the ratios of the CKM

matrix elements (recall that fq1
∼ λ3, fq2

∼ λ2). Similarly, the off-diagonal couplings of the

singlet quarks are suppressed by hierarchically small entries. This suppression is called the

RS-GIM mechanism. It is enough to suppress most of the dangerous ∆F = 2 operators,

though not all, as we will see in a moment.

Integrating out the KK gluon and applying appropriate Fierz identities we obtain the

effective Hamiltonian:

H =
1

M2
G

[

1

6
gij
L g

kl
L (q̄iα

L γµq
j
Lα) (q̄kβ

L γµql
Lβ)

−gij
Rg

kl
L

(

(q̄iα
R q

k
Lα) (q̄lβ

L q
j
Rβ) − 1

3
(q̄iα

R q
l
Lβ) (q̄kβ

L qj
Rα)

)]

= C1(MG)(q̄iα
L γµq

j
Lα) (q̄kβ

L γµql
Lβ)

+C4(MG)(q̄iα
R q

k
Lα) (q̄lβ

L q
j
Rβ) + C5(MG)(q̄iα

R q
l
Lβ) (q̄kβ

L qj
Rα)

where α, β are color indices. The Wilson coefficients of these operators will directly corre-

spond to the C1,4,5 bounded by the model independent constraints from ∆F = 2 processes

by the UTFit collaboration3 in [11], see table 2.

Note, that the most strongly constrained quantity is the imaginary part of C4
K for the

kaon system. Contributions to ǫK coming from C4
K are enhanced compared to the ones to

C1
K with SM like chirality by

∼ 3

4

(

mK

ms(µL) +md(µL)

)2

η−5
1 (2.18)

where the first factor ≈ 18 is the chiral enhancement of the hadronic matrix element and

η−5
1 ≈ 8 is the relative RGE running [23].

We are ready to estimate the flavor bounds of the RS model. Using the expressions for

the orders of magnitudes for the rotation matrices U we approximately find for the Wilson

coefficient at the TeV scale

CRS
4K ∼ g2

s∗
M2

G

fq1
fq2
f−d1

f−d2
∼ 1

M2
G

g2
s∗
Y 2
∗

2mdms

v2
. (2.19)

Above, md,ms are the down, strange masses at the TeV scale, see table 1. At tree level

and in absence of boundary kinetic terms, the bulk coupling gs∗ is connected the strong

coupling at the KK scale by gs∗ = gs(MG) log1/2(R′/R) ∼ 6. If arbitrary large Y∗ was

allowed the bounds from C4K could be eliminated completely. However, if Y∗ is too large

one loses perturbative control over the theory. One can estimate the upper bound on Y∗
using naive dimensional analysis. The proper brane localized Yukawa coupling Y5D is in our

normalization Y5D = Y∗R′. One-loop corrections to the localized Yukawa coupling would

be proportional to Y5D(Y5DE)2/(16π2), where the energy dependence is inferred from the

dimension −1 of Y5D. In order for this to be smaller than the tree-level term we need to

impose (Y5DE)2/(16π2)<∼ 1. We require that this bound is not violated until we reach the

3We are grateful to Luca Silvestrini for discussions about the proper interpretation of the UTFit bounds.
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Parameter Limit on ΛF (TeV) Suppression in RS (TeV)

ReC1
K 1.0 · 103 ∼ r

√
6/(|VtdVts|f2

q3
) = 23 · 103

ReC4
K 12 · 103 ∼ r(vY∗)/(

√
2mdms) = 22 · 103

ReC5
K 10 · 103 ∼ r(vY∗)

√
3/(

√
2mdms) = 38 · 103

ImC1
K 15 · 103 ∼ r

√
6/(|VtdVts|f2

q3
) = 23 · 103

ImC4
K 160 · 103 ∼ r(vY∗)/(

√
2mdms) = 22 · 103

ImC5
K 140 · 103 ∼ r(vY∗)

√
3/(

√
2mdms) = 38 · 103

|C1
D| 1.2 · 103 ∼ r

√
6/(|VubVcb|f2

q3
) = 25 · 103

|C4
D| 3.5 · 103 ∼ r(vY∗)/(

√
2mumc) = 12 · 103

|C5
D| 1.4 · 103 ∼ r(vY∗)

√
3/(

√
2mumc) = 21 · 103

|C1
Bd

| 0.21 · 103 ∼ r
√

6/(|VtbVtd|f2
q3

) = 1.2 · 103

|C4
Bd

| 1.7 · 103 ∼ r(vY∗)/(
√

2mbmd) = 3.1 · 103

|C5
Bd

| 1.3 · 103 ∼ r(vY∗)
√

3/(
√

2mbmd) = 5.4 · 103

|C1
Bs

| 30 ∼ r
√

6/(|VtbVts|f2
q3

) = 270

|C4
Bs

| 230 ∼ r(vY∗)/(
√

2mbms) = 780

|C5
Bs

| 150 ∼ r(vY∗)
√

3/(
√

2mbms) = 1400

Table 2: Lower bounds on the NP flavor scale ΛF for arbitrary NP flavor structure from [11] and

the effective suppression scale in RS for KK mass with MG = 3 TeV. Since the Wilson coefficients

in [11] are given at the scale ΛF , we have corrected for the renormalization group scaling from

ΛF to 3 TeV using the expressions in [23] when necessary. We have set |Y∗| ∼ 3, fq3
= 0.3 and

r = MG/gs∗.

energies N KK modes, E = NKKmKK. Using mKK ∼ 2/R′ we find that Y∗<∼(2π)/NKK. For

the most conservative bound we set NKK = 2, which imposes Y∗<∼3. Thus in our estimates

we assume |Y∗|<∼3. The suppression scale of the four-fermion operator is set by the lightest

KK gluon mass MG. The RS-GIM mechanism effectively raises the suppression scale by

the factor v/
√
mdms ∼ 104. However, that factor turns out to be an order of magnitude

too small for a ∼ 3TeV KK gluon. One can find that in order for the suppression scale

to match 1.6 · 105 TeV we need MG ∼ (22 ± 6) TeV. Our estimate is less optimistic than

that encountered in the RS literature so far [10, 24, 25]. The quoted error comes from the

uncertainty in the md and ms masses. Including the contributions of the full KK gluon

tower may change our result by less than 10%.

In order to understand the actual flavor bound on the RS model in more detail we

have generated a sample of points with randomly chosen values of 1/R′ and brane Yukawa

– 8 –
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Figure 1: Scan of the effective suppression scale of ImC4K in the RS model. All the points give the

correct low-energy spectrum but most of the points with mG < 21TeV fail to satisfy the bound of

Λ > 1.6 ·105 TeV. The blue line is a linear fit of the MG dependence. We have taken cq3
∈ [0.4, 0.45],

cu3
∈ [−0.3,−.05], cd3

= −0.55 and |Y∗| ∈ [1, 3].

couplings of which we selected 500 where the masses, the absolute values of the CKM

elements and the Jarlskog invariant approximately matches the SM prediction. We then

calculate the exact flavor suppression scale for the C4K operator. The result is presented

in figure 1. We can say that, in accordance with our analytical estimates, as long as MG is

below 21 TeV the majority of the generated points violate the flavor bound. This turns the

”coincidence problem” of RS [6] into a fine tuning problem: unless there is some additional

flavor structure one is likely to violate the flavor bounds.

Note, that there is a model dependence that can strengthen or weaken the above

obtained bound: the matching of the bulk gauge coupling to the strong coupling can be

changed by adding localized kinetic terms for the gluon

1

g2
s(q)

=
logR′/R

g2
s∗

+
1

g2
s,UV (q)

+
1

g2
s,IR(q)

(2.20)

A positive brane kinetic term would make the KK gluon more strongly coupled, which

would make the flavor bounds more severe. However, the UV brane coupling can be

effectively negative at the TeV scale, if one includes the 1-loop running effects [38],4

1

g2
s,UV (q)

=
1

g2
s,UV (1/R)

− bUV
3

8π2
log(1/qR) (2.21)

where bUV
3 is the QCD beta functions of the zero modes localized around the UV branes.

The running of the IR brane localized kinetic term is cut off at the scale ∼ 1/R′ therefore

it will not involve a large logarithm and we will neglect the IR brane localized terms, and

focus only on the UV brane localized kinetic terms. Assuming that the top is localized on

4We thank Kaustubh Agashe and Roberto Contino for pointing this out.
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the TeV brane, and all other fields on the UV brane for QCD we find bUV
3 = 8. Thus, the

asymptotically free QCD running reduces the magnitude of gs∗ and thus the coefficient of

the operators induced by the KK gluon exchange, while a bare UV brane localized kinetic

term would enhance the effect. Our 21 TeV bound presented above corresponds to a choice

of boundary kinetic terms where the bare UV couplings exactly cancels the contribution

from the running. Another possibility would be to assume no UV boundary kinetic term at

the Planck scale. In that case the coupling of the KK gluon is much weaker, changes from

gs∗ ≈ 6 to gs∗ ≈ 3, and the bound is reduced by a factor of ∼ 2 from 21 TeV to 10.5 TeV.

Yet another possibility is to pick a large bare UV coupling such that the bulk is strongly

coupled, gs∗ ∼ 4π. This would enhance the flavor bound on the KK gluon mass by a factor

of ∼ 2 from 21 TeV to 42 TeV.

In the remainder of this paper we investigate how the flavor bounds are modified in

5D models where the electroweak breaking sector arises dynamically.

3. 5D models for pseudo-goldstone Higgs

In this section we introduce the 5D framework of GHU and define particular models whose

flavor structure we will later study. The basic ingredient of GHU is the presence of a zero

mode along the scalar (Az) direction of the bulk gauge field. This mode is identified with

the SM Higgs boson. The idea of GHU has a long history going back to Manton and

Hosotani [15]. More recently, GHU has been formulated in 5D warped space-time [26, 16,

17] which, among other things, allows one to obtain a heavy enough top quark. Other

important developments are related to electroweak precision observables (EWPO’s). The

S-parameter is within the experimental bounds if the KK scale of the theory is raised to

2-3 TeV [17]. The ρ-parameter can be protected by custodial symmetry, and the discrete

L↔ R symmetry protecting the Zbb̄ vertex can be implemented [28].

The simplest GHU model with custodial symmetry is based on the SO(5) × U(1)X
(plus the color group) bulk gauge group which is broken via boundary conditions to the

SM group SU(2)L ×U(1)Y on the UV brane and to SO(4)×U(1)X on the IR brane, where

SO(4) ∼SU(2)L×SU(2)R. The fact that the SO(5)/SO(4) coset generators are broken on

both branes results in four zero modes with the quantum numbers of the SM Higgs doublet.

At tree-level, these modes are massless due to 5D gauge invariance, but at one loop they

develop a potential.

We denote the dimensionful gauge coupling of SO(5) by g∗R1/2. A useful measure of

the magnitude of g∗ is the number of colors of the dual CFT by

NCFT =
16π2

g2
∗

(3.1)

The 5D description is perturbative as long as NCFT ≫ 1. We also allow for a UV brane

localized gauge kinetic terms for SU(2)L (for simplicity, we set the U(1)Y brane kinetic

term to zero) and parametrize it by 1/g2
UV = r2 log(R′/R)/g2

∗ . The SU(2)L coupling is

then related to the 5D parameters by

g =
g∗

log1/2(R′/R)
√

1 + r2
(3.2)
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For a small brane kinetic term, r ≪ 1, and the Planck-TeV hierarchy, log(R′/R) ∼ 37, we

need the bulk coupling g∗ ≈ 4 (corresponding to NCFT = 10) in order to reproduce the

SM weak coupling. With the brane kinetic term we have to make the bulk more strongly

coupled, in particular for r2 = 4 we go down to NCFT = 2.

The four components ha of the Higgs doublet are embedded into the gauge field A5 as

Az(z) =

√

2

R

z

R′T
a
Ch

a(x) (3.3)

Here, the T a
C ’s are the generators of the SO(5)/SO(4) coset. The normalization is chosen

such that ha’s have the canonical kinetic terms in the 4D effective theory. We fix the Higgs

vev along the h4 direction, and we denote 〈h4〉 = ṽ.

The 5D model has two important scales that play a vital role in the dynamics. One is

R′ which sets the KK scale, and the masses of the lightest KK modes of electroweak gauge

bosons are roughly ∼ 2.4R′. Another important quantity is the global symmetry breaking

scale fπ (or the ”Higgs decay constant”) defined by

fπ =
2

g∗R′ =
2

g
√

logR′/R
√

1 + r2R′
. (3.4)

Because the logarithm is large, fπ < R′ by at least a factor of ∼ 2. The W-mass is

connected to the scale fπ and the Higgs vev via

M2
W =

g2f2
π

4
sin2(ṽ/fπ) (3.5)

For ṽ ≪ fπ, once recovers the SM formula M2
W ≈ g2ṽ2/4.

Fixing the gauge group still leaves several options for realizing the fermionic sector of

the theory, depending on how the SM quarks are embedded into SO(5) representations.

In this paper we consider three distinct realizations that have previously appeared in the

literature. Before we move to the detailed description of the model we point a few general

model-building rules that we need follow.

• The SM quarks are identified with the zero modes of 5D quarks. The presence of

zero modes depends on the boundary conditions. There are two possibilities: either

we choose the right-handed chirality of the 5D fermion to vanish on a boundary

(which is denoted as [+]), or the left-handed chirality vanishes (denoted as [−]).

Left-handed zero modes - appropriate for SM doublet quarks - arise whent the right-

handed chirality vanishes on both the UV and the IR brane, the choice denoted as

[++]. The [−−] boundary conditions lead to right-handed zero modes appropriate

for the SU(2)L singlet SM quarks.

• Each of the SM quarks should be embedded in a separate SO(5) multiplet. In principle,

SO(5) multiplets contain fields with the quantum numbers of both doublet and singlet

quarks. However, multiplets that yield both doublet left-handed zero modes and

singlet right-handed zero modes are problematic for the following reason. For the

first two generations, if the left-handed zero mode is localized close to the UV brane,
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then the right handed zero mode is localized at the IR brane, which leads to problems

with precision measurements. For the third generation, the reason is more subtle and

has to do with the radiative generation of the Higgs potential; we will comment on

that later. Thus, we need at least three SO(5) multiplets for each generation. As a

consequence, the field content of GHU models is necessarily larger than that of RS.

• Apart from the zero mode, the remaining fields in the multiplets should yield only

heavy KK modes. One should take care that the boundary conditions do not lead to

ultra-light KK modes. This may happen for the quarks living in the same multiplet

with UV localized zero modes, depending on the boundary conditions of the remaining

fields. The rule of thumb is that SO(5) partners of [++] fields should be assigned

[−+] boundary conditions, while the partners of [−−] fields should have [+−].

• This zeroth-order picture is modified by the mass terms on the IR brane that mix

different 5D multiplets. These mass terms are necessary to arrive at acceptable

phenomenology. First of all, since the Higgs field is a component of Az, it only

couples 5D quarks from the same bulk multiplet. In order to obtain non-zero quark

masses, at least some of the zero modes should have non-vanishing components in

more than one multiplet. The boundary mass terms play a similar role as the Yukawa

couplings in RS but, as we discuss later, there are some important differences.

• At the end of the day, the boundary conditions to SO(5) multiplets should be such

that SO(5) is broken on both the UV and the IR branes. The Wilson-line breaking is

a non-local effect that is operating only when the gauge symmetry is broken on both

endpoints of the fifth dimension. If either the UV or the IR boundary conditions are

SO(5) symmetric, the Wilson line can be rotated away, and the SM quarks do not

acquire masses.

We move to discussing three specific realizations that satisfy the above requirements.

3.1 Spinorial

The spinor representation 4 is the smallest SO(5) representation. Although models with

the third generation embedded in the spinorial representation have severe problems with

satisfying the precision constraints on the Zbb vertex, we do include it in our study. The

reason is that this model is the simplest (it has the minimal number of bulk fields), and its

flavor structure is most transparent. Furthermore, almost identical flavor structure appears

in the fully realistic models.

We consider 3 bulk SO(5) spinors for a single generation of quarks, Ψq,Ψu,Ψd (recall

that we omit the generation index; all fermionic fields should be read as three-vectors in the

generation space). Under the SU(2)L×SU(2)R subgroup it splits as 4 → (2, 1) + (1, 2), so

that an SO(5) spinor contains both SU(2)L doublets and singlets. Roughly, Ψq will provide

the zero mode for the left-handed quark doublets, while Ψu,Ψd for the right handed up

and down-type quarks. To obtain the SM zero mode spectrum we impose the following
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boundary conditions

Ψq =







qq[+,+]

uc
q[−,+]

dc
q[−,+]






Ψu =







qu[+,−]

uc
u[−,−]

dc
u[+,−]






Ψd =







qd[+,−]

uc
d[+,−]

dc
d[−,−]






(3.6)

with the notation that the first component is a complete SU(2)L doublet, while the lower

two components are the two components of an SU(2)R doublet, qc = (uc, dc). Our model

is similar to the one in ref. [17], even though we assign different IR boundary conditions

for the SU(2)R doublets.5

We denote the left-handed chirality modes of a Dirac field by χ, while the right-

handed chiralities by ψ. For example χqq stands for the left-handed chirality SU(2)L
doublet contained in Ψq. The above set of parity assignments ensures the zero modes

with SM quantum numbers in χqq , ψuc
u

and ψdc
d
. However, at this point there would be no

Yukawa couplings at all, since the zero modes live in completely different bulk multiplets.

To obtain non-zero Yukawa couplings, at least some of the zero modes should have non-

vanishing components in more than one multiplet. This can be achieved via the following

IR localized mass terms:

LIR = −
(

R

R′

)4 [

m̃uχqqψqu +m̃dχqqψqd
+M̃u(χuc

q
ψuc

u
+ χdc

q
ψdc

u
)+M̃d(χuc

q
ψuc

d
+ χdc

q
ψdc

d
)
]

(3.7)

Here m̃u,d, M̃u,d are dimensionless 3 by 3 matrices, which will play the similar role as

brane-localized Yukawa couplings in the original RS. All flavor mixing effects in this model

originate from the IR localized mass terms. The effect of m̃u is to rotate the doublet zero

mode partly into the Ψu field, while m̃d rotates it partly into Ψd. At the same time M̃u

will rotate the singlet up-type zero mode partly into Ψq, and similarly M̃d will rotate the

down-type zero mode into Ψd. The boundary mass terms respect the SU(2)L×SU(2)R of

the IR brane, but they break SO(5). In the limit m̃u = M̃u and m̃d = M̃d SO(5) invariance

is restored in the IR boundary conditions, and the zero mode quarks become massless.

In the presence of the boundary terms the IR brane boundary conditions will be

modified as

ψqq = −m̃uψqu − m̃dψqd

χqu = m̃†
uχqq

χqd
= m̃†

dχqq (3.8)

ψQq = −M̃uψQu − M̃dψQd

χQu = M̃ †
uχQq

χQd
= M̃ †

dχQq (3.9)

3.2 Fundamental + Adjoint

As we explain later, the model with fermions in the spinor representation turns out to have

incurable problems: the Higgs mass tends to be too light, and there is a large irreducible

5In particular, Ψq and Ψu alone would be equivalent after interchanging M̃u → 1/M̃u. With Ψd included,

the two models are not equivalent.
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correction to the Zbb̄ vertex. The situation is improved in models where the doublet

quarks are embedded in the fundamental representation of SO(5). The original motivation

for considering the fundamental represenation was the realization [18] that it is possible to

greatly reduce the corrections to the Zbb̄ vertex by using an embedding of the SM fermions

into the custodially symmetric SU(2)L×SU(2)R model under which the bL is symmetric

under SU(2)L ↔SU(2)R. The simplest implementation of this Z2 symmetry is when the

left handed quarks are in a bifundamental under SU(2)L×SU(2)R, while tR is a singlet.

In the context of the SO(5) MCH model the minimal model is obtained via introducing

two fundamental (5) and one adjoint (10) representation. This is the model for which the

constraints from electroweak symmetry breaking and electroweak precision constraints have

been investigated in detail in [27]. Under U(1)X all bulk fermion carry charge -2/3. Under

the SO(4) subgroup 5 → (2, 2) + (1, 1), while 10 → (3, 1) + (1, 3) + (2, 2). In order to

protect the Zbb̄ vertex we want qL to be part of (2,2), tR in (1,1) and bR in (1,3). Thus the

fermion content of this model will be 2 × 3 5D quarks in the fundamental representation

and 1 × 3 quarks in the adjoint representation of SO(5). The fives (denoted Ψq, Ψu)

each host three up quarks u, ũ, uc, one down quark d and one exotic charge 5/3 quark

X. q = (u, d) is hypercharge 1/6 SU(2)L doublet, while q̃ = (X, ũ) is hypercharge −7/6

SU(2)L doublet. (q, q̃) is a bidoublet under SU(2)L ×SU(2)R. The tens (denoted Qd) hosts

four up quarks ud, ũd, ul, ur, three down quarks dd, dl, dr, and three exotics Xd, X l,

Xr. These quarks are collected into an SU(2)L triplet l = (X l, ul, dl), an SU(2)R triplet

r = (Xr, ur, dr) and a bidoublet qd, q̃d, where qd = (ud, dd) is hypercharge 1/6 SU(2)L
doublet, while q̃d = (Xd, ũd) is hypercharge −7/6 SU(2)L doublet. Below we write the

appropriate boundary conditions for the left-handed fields of every component:

Ψq =

(

qq[+,+] q̃q[−,+]

uc
q[−,+]

)

Ψu =

(

qu[+,−] q̃u[+,−]

uc
u[−,−]

)

(3.10)

Ψd =











l[+,−] r =







Xr[+,−]

ur[+,−]

dr[−,−]







qd[+,−] q̃d[+,−]











(3.11)

With the above parity assignments we can also add IR boundary masses for the

fermions, which are necessary to generate the effective Yukawa couplings. These are given

by

LIR = −
(

R

R′

)4
[

m̃u(χqqψqu + χq̃qψq̃u) + M̃uχuc
q
ψuc

u
+ m̃d(χqqψqd

+ χq̃qψq̃d
)
]

+h.c. (3.12)

Note that the symmetries allow for one less boundary mass matrix than in the spinorial

model. The flavor structure of this model turns out to be identical to that of the spinorial

model with M̃d = 0.

3.3 Four-fundamental

Another possible implementation of the symmetry protecting the Zbb̄ vertex is to use four

copies of bulk fundamentals for every generation: two for the up-type quarks and two for
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the down-type quarks [28]. In the up sector one of the fundamental provides a left handed

doublet zero mode (in the bifundamental of the custodial symmetry), and one right handed

up-type singlet zero mode. In order to obtain the correct hypercharges for the SM quarks,

the U(1)X charge of these up-type fundamentals has to be -2/3. To realize the down sector

we need two additional fundamentals, with X charge 1/3, one providing another doublet

zero mode, and the other the down right zero mode. In order to remove the additional

doublet, we must assume that on the Planck brane there is an additional right handed

doublet, which will marry one combination of the two doublet zero modes.

The boundary conditions are given by6

Ψqu =

(

qqu[±,+] q̃qu[−,+]

uq[−,+]

)

Ψu =

(

qu[+,−] q̃u[+,−]

uu[−,−]

)

(3.13)

Ψqd
=

(

q̃qd
[−,+] qqd

[±,+]

dq[−,+]

)

Ψd =

(

q̃d[+,−] qd[+,−]

dd[−,−]

)

(3.14)

Here [±] stands for mixed boundary conditions for the electroweak doublets qqu and qqd
on

the UV brane:

θχqqu
− χqqd

= 0 ψqqu
+ θ†ψqqd

= 0 (3.15)

where θ is a 3× 3 matrix that describes which combinations of the fields χqqu
and χqqd

are

removed on the UV brane.

Then the left handed zero modes from [++] and the right handed zero modes from

[−−] fields are all elementary. We again add the IR boundary mass terms

−
(

R

R′

)4
[

m̃u(χqqu
ψqu + χq̃qu

ψq̃u) + M̃uχuqψuu

+m̃d(χqqd
ψqd

+ χq̃qd
ψq̃d

) + M̃dχdq
ψdd

]

+ h.c. (3.16)

We have four IR matrices, just like in the spinorial model. In this model, however, there is

an additional source of flavor violation - the matrix θ that sets the UV boundary conditions.

4. Higgs potential

In this section we review the computation of the one-loop Higgs potential in the GHU

models considered in this paper. Determining the shape of the potential will allow us

to pinpoint the regions of parameter space that lead to a correct electroweak breaking

vacuum. We will later use this input in our studies of the parameter space allowed by

flavor constraints. This section is more technical and slightly outside the main line of the

paper, yet we include it to keep the paper self-contained. Those readers whose primary

interest is in flavor physics are cordially invited to jump straight to the next section.

6Again, our IR boundary conditions are different than those of ref. [28] but the physical content of the

model is similar. In particular, the up-quark sector alone would be equivalent after replacing M̃u with

1/M̃u.
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A radiative Higgs potential is generated at one-loop level because the tree-level KK

mode masses depend on the vev ṽ of the Wilson line. The simplest way to calculate is

to use the so-called spectral function ρ(p2) = det(−p2 +m2
n(ṽ)), that is a function of 4D

momenta whose zeros encode the whole KK spectrum in the presence of the electroweak

breaking. With a spectral function at hand, we can compute the Higgs potential from the

Coleman-Weinberg formula,

V (ṽ) =
N

(4π)2

∫ ∞

0
dpp3 log

(

ρ[−p2]
)

(4.1)

where N = −4Nc for quark fields and N = +3 for gauge bosons. The spectral function

can be computed by solving the equations of motion and the boundary conditions in the

presence of the Higgs vev.

The leading contribution to the Higgs potential comes from the top quark sector and

the gauge sector. Thus, we can restrict to computing the spectral functions of the top

quark KK tower (ρt), the W boson tower (ρW ) and the Z boson tower (ρZ). For the sake of

this computation we ignore the mixing of the top quark with the first two generations. An

explicit expression for the potential in terms of these spectral functions is (with t = p2):

V (ṽ) =
3

32π2

∫ ∞

0
dtt [−4 log ρt(−t) + 2 log ρW (−t) + log ρZ(−t)] . (4.2)

The gauge sector is common to all three models. The spectral functions for the SO(5)

GHU model were already given in detail in [29, 31]. For completeness we will summarize

the results below. Of the various SO(5) gauge bosons only the masses of the tower cor-

responding to the W,Z bosons depends on the Higgs VEV. The spectral function has the

form

ρW,Z(−p2) = 1 + fW,Z(−p2) sin2(ṽ/fπ), (4.3)

where the form factors fW,Z do not depend on ṽ. The equations of motion in AdS are

solved in term of the Bessel functions, and the form factors turn out to be complicated

combinations thereof. There is however a way to organize them in a more convenient

form by using the generalized warped-space trigonometric functions introduced in ref. [34].

We define C(z) and S(z) to be the two independent solution of the equations of motion

that satisfy the UV boundary conditions C(R) = 1, C ′(R) = 0, S(R) = 0, S′(R) = m.

Explicitly they read,

C(z) =
πmz

2
[Y0 (mR) J1 (mz) − J0 (mR)Y1 (mz)]

S(z) =
πmz

2
[−Y1 (mR)J1 (mz) + J1 (mR)Y1 (mz)] (4.4)

Using this, the form factors can be abbreviated to

fW (m2) =
m

2

(

R′

R

)

1

[C ′(R′) − r2mR log(R′/R)S′(R′)]S(R′)

fZ(m2) =
m

2

(

R′

R

) 1 + tan2 θW

1+r2

(

1 − r2mR log(R′/R) S′(R′)
C′(R′)

)

[C ′(R′) − r2mR log(R′/R)S′(R′)]S(R′)
(4.5)
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where tan θW = g′/g. In the evaluation of the Higgs potential we use the warped trigono-

metric functions at m2 = −p2, e.g.

S(R′) = ipR′ [−I1 (pR)K1

(

pR′)+K1 (pR) I1
(

pR′)] . (4.6)

We move to the top sector. Again, the equations of motions can be solved in terms

of the Bessel functions, but there is also a dependence on the bulk mass parameters c. As

for the gauge bosons, it is convenient to introduce the AdS warped trigonometric functions

(here already evaluated for m2 = −p2)

Cc = pR

(

R

R′

)−c−1/2
[

Kc−1/2 (pR) Ic+1/2

(

pR′)+ Ic−1/2 (pR)Kc+1/2

(

pR′)]

Sc = pR

(

R

R′

)−c−1/2
[

−Ic+1/2 (pR)Kc+1/2

(

pR′)+Kc+1/2 (pR) Ic+1/2

(

pR′)] (4.7)

The form of the spectral function depends on the fermion representations, and we have

to treat each of the three models separately. In the spinorial model, the spectral function

can then be parameterized in terms of the form factors f2,4

ρt(−p2) = 1 + f t
2(−p2) sin2(ṽ/2fπ) + f t

4(−p2) sin4(ṽ/2fπ) (4.8)

Note that the spectral depends on sin2(ṽ/2fπ) rather than sin2(ṽ/fπ), which is a peculiarity

of the spinorial representation. The form factors can be written as

f t
2 =

F t
2

F t
0

f t
4 =

F t
4

F t
0

(4.9)

F0(p
2) =

[

S−cqCcu + |m̂2
u|S−cuCcq + |m̂2

d|S−cd

CcuCcq

Ccd

]

×

×
[

ScuC−cq + |M̂2
u |ScqC−cu − |M̂2

d |S−cd

ScuScq

Ccd

]

F2(p
2) = −|m̂u − M̂u|2 + (|m̂u|2 − |M̂u|2)(ScqS−cq − ScuS−cu)

−(|m̂d|2 − |M̂d|2)ScuS−cd

Ccu

Ccd

+ (|m̂d|2|M̂u|2 − |m̂u|2|M̂d|2)ScqS−cd

Ccq

Ccd

F4(p
2) = |m̂u − M̂u|2 (4.10)

The hatted boundary masses are again defined as

m̂u = (R′/R)cu−cqm̃u M̂u = (R′/R)cu−cqM̃u (4.11)

m̂d = (R′/R)cd−cqm̃d M̂d = (R′/R)cd−cqM̃d

In the model with fundamentals + adjoint the spectral functions read

ρt(m
2) = 1 + f t

2(m
2) sin2(ṽ/f) + f t

4 sin4(ṽ/f). (4.12)
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Note that for the fundamental and adjoint representations the spectrals are expressed in

terms of sin2(ṽ/f), rather than sin2(v/2f) as for the spinors. We write

f t
2 =

F t
2(m

2)

F t
0(m

2)

f t
4 =

F t
4(m

2)

F t
0(m

2)
(4.13)

F t
0 =

[

S−qCu + |m̂u|2CqS−u +
S−d

Cd
|m̂d|2CqCu

]

[

C−qSu + |M̂u|2SqC−u

]

F t
2 =

1

2

(

− |m̂u − M̂u|2 + (|m̂u|2 − |M̂u|2)(2SqS−q − SuS−u)

−S−d

Cd
|m̂d|2(SuCu + 2|M̂u|2SqCq)

+
|m̂u|2(|m̂u|2 − |M̂u|2)SqS−u +

S−d

Cd
|m̂u|2|m̂d|2SqCu

C−qCu − |m̂u|2SqS−u − S−d

Cd
|m̂d|2SqCu

)

F t
4 =

1

2
|m̂u − M̂u|2 (4.14)

Finally, in the model with four fundamental multiplets

ρt(m
2) = 1 + f t

2(m
2) sin2(ṽ/f) + f t

4 sin4(ṽ/f) (4.15)

f t
2 =

F t
2(m

2)

F t
0(m

2)

f t
4 =

F t
4(m

2)

F t
0(m

2)

F t
0(m

2) = F 0
0 + |θ|2F θ

0

F t
2(m

2) = F 0
2 + |θ|2F θ

2 (4.16)

We find

F 0
0 =

[

S−quCu + |m̂2
u|CquS−u

]

[

C−quSu + |M̂2
u |SquC−u

]

F θ
0 =

[

C−quSu + |M̂2
u |SquC−u

]

[

C−quCu − |m̂2
u|SquS−u

]

×
[

S−qd
Cd + |m̂2

d|Cqd
S−d

]

/
[

C−qd
Cd − |m̂2

d|Sqd
S−d

]

F 0
2 =

1

2

(

−|m̂u − M̂u|2 + (|m̂u|2 − |M̂u|2)(2SquS−qu − SuS−u)
)

+
1

2
|m̂u|2(|m̂u|2 − |M̂u|2)SquS−u/

[

C−quCu − |m̂2
u|SquS−u

]

F θ
2 = (|m̂u|2 − |M̂u|2)C−quSqu

×
[

S−qd
Cd + |m̂2

d|Cqd
S−d

]

/
[

C−qd
Cd − |m̂2

d|Sqd
S−d

]

F t
4 =

1

2
|m̂u − M̂u|2 (4.17)
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Figure 2: Left panel: the dependence of the Higgs mass on 1/R′ for a variety of input parameters

that give successful electroweak symmetry breaking for the model with bulk fundamentals and

adjoints with points selected to give the top mass in the physical range. Right panel: the correlation

between the top and the Higgs masses for the same case. Orange (x), blue (o), and green (*) points

correspond to ǫ < 0.1, 0.1 < ǫ < 0.3 , and 0.3 < ǫ.

Figure 3: The dependence of the Higgs mass on the effective number of colorsNCFT (corresponding

strength of the bulk coupling) for the case of bulk fundamental plus adjoint fermions. Orange (x),

blue (o), and green (*) points correspond to ǫ < 0.1, 0.1 < ǫ < 0.3 , and 0.3 < ǫ.

These expressions can be used for the calculation of the Higgs potential in each model.

One practical option is to numerically calculate the integral in (4.2). However, it is useful

to gain some more insight into the shape of the potential. This can be done by expanding

the potential in powers of x ≡ sin2(ṽ/fπ) (for the top contribution in the spinorial repre-

sentation we expand in x = sin2(ṽ/2fπ)). One complication in this expansion is that the

integral in (4.2) is logarithmically IR divergent in the limit x→ 0. This is due to the fact

that some of the masses vanish in the limit ṽ → 0, and the usual CW formula contains

terms of the form m4 logm2.

The top contribution to the Higgs potential has the form

Vt(x) = − 3

8π2

∫ ∞

0
dt t log[1 + f t

2(−t)x+ f t
4(−t)x2] (4.18)
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For small x this can be expanded as

Vt(x) = at
1x+ at

2x
2 + nt

2x
2 log

2ctx

Λ2
+ O(x3) (4.19)

We defined the coefficient ct that captures the IR behavior of the form factors, namely

f t
1(−t) ≈ −f t

2(−t) ≈ ct/t for t → 0, and it is related to the SM top quark mass by

m2
t ≈ ctx. This coefficient can be read off from the top spectral function by replacing

Cc → 1, Sc → itR′(R′/R)−2cf−2
c . We can then show that the general expression for the

coefficients in the expansion should be

at
1 = − 3

8π2

∫ ∞

0
dt tf t

2

at
2 = − 3

16π2

[∫ ∞

0
dt t

(

2f t
4 − (f t

2)
2 +

c2

Λ4 sinh2(t/Λ2)

)

− 3

2
c2t

]

nt
2 = − 3

16π2
c2t (4.20)

The scale Λ is an IR regulator and it may take an arbitrary value. The expansion param-

eters depend on Λ in such a way that the dependence on the IR regulator cancels out at

order x2.

In the cases when the top contribution, dominates the minimum of the potential is

given by the approximate formula:

xm = − at
1

2at
2 + nt

2 + 2nt
2 log(2cxm/Λ2)

(4.21)

In practice, however, the acceptable minimum with xm ≪ 1 occurs only for fine-tuned

values of the parameters such that at
1 is much smaller than its natural value ∼ m2

t (R
′)2/4π2.

In that case, the W and Z boson contributions can significantly shift the minimum, and

the acceptable EW breaking vacuum occurs for different c-parameters than without the

gauge contributions. The gauge contributions are calculated from

VW (x) =
3

16π2

∫ ∞

0
dt t log[1 + fW

2 (−t)x]

VZ(x) =
3

32π2

∫ ∞

0
dt t log[1 + fZ

2 (−t)x] (4.22)

and the expansion can be done analogously as for the top, by setting fW,Z
4 = 0. In our

numerical studies we take the gauge contributions into account.

We turn to discussing the main features of the Higgs potential generated by the top,

bottom and gauge loops. We have scanned the parameter space to find self-consistent

combinations leading to realistic EWSB. In the scan we first choose the brane kinetic term

r, the bulk masses cq3
and cd3

, the size of the brane masses m̃u, m̃d, M̃u, M̃d, the KK

scale 1/R′ and keep the hierarchy fixed at R/R′ = 10−16. We then determine v/fπ such

that the mW mass is reproduced and finally choose cu3
such that the minimum of the

Coleman-Weinberg potential is really at this value of v/fπ.
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For the case of fundamental plus adjoint bulk fermions we do find plenty of realistic

values for the Higgs and the top masses, in agreement with the results of [31]. This is

illustrated in figure 2. Note however, that in order to fit the W-mass successfully with

a sufficiently small ǫ one is usually forced to introduce UV localized kinetic terms. The

dependence of the Higgs mass on the UV localized kinetic terms is illustrated in figure 3.

For our analysis of the flavor scales we are only selecting from the points that give a

satisfactory top with low values of ǫ.

However, there is a fine tuning reminiscent of the little hierarchy problem showing up:

if one fixes the mixing parameters m̃u,d, M̃u,d and the bulk masses cq,d, then for given radii

R,R′ and for generic choices of the other parameters we have only a very narrow region in

the parameter cu that produces an ǫ which is phenomenologically acceptable (for example

0.1 < ǫ < 0.45). This suggests that in the interesting region with proper electroweak

symmetry breaking there will be a strong sensitivity of ǫ to the input parameters. This

was first pointed out in [30] and we find it to be a general property of all representations

studied in this paper. To illustrate this we show two examples of the dependence of ǫ on

cu in figure 4. The first one is a randomly chosen point where one has to adjust cu to a

high precision in order to find proper EWSB, while the second one corresponds to the best

case scenario that we could find after searching for regions where the tuning is milder. We

can see that the derivative of ǫ is very large in the first point, and even in the second point

it is still quite sizeable.

In order to quantify the tuning in these models we have calculated the local sensitivity

to the input parameters in the ranges given in section 5.3, for the regions with acceptable

electrowaek symmetry breaking only. We then define the local fine tuning as [32, 35]

t−1 = max

∣

∣

∣

∣

∂ log ǫ

∂ log ai

∣

∣

∣

∣

(4.23)

In this scan we have only included points where EWSB happens with a sufficiently

small S parameter and excluded all other points. The parameters ai were taken to be

cq3
, cu3

, m̃u, M̃u. We then estimate the average tuning for given ǫ by fitting the average of

t with a quadratic polynomial in ǫ. The best fit is approximately

t ∼ 1

4
ǫ2 (4.24)

which qualitatively agrees with the ǫ2 estimate of [17] but is numerically somewhat stronger.

This implies that the average local tuning is a about half a percent for ǫ = 0.1, while about

5% for ǫ = 0.4. To verify those estimates we extended the parameter space to a large grid

in the parameters cq3
, cu3

, m̃u, M̃u and checked that the above fit for t = t(ǫ) remains a

conservative lower bound over all parameter space. These averages are shown as crosses in

figure 5 where each cross contains the average of about 200 points. Note however that one

can find restricted local areas in parameter space where the fine tuning is less severe than

the above quoted average.

For the spinorial representations we find that the bottom KK tower plays an important

role in electroweak symmetry breaking. Without including the bottom tower we could not
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Figure 4: The plots show the dependence of ṽ/fπ on cu of the third generation for two sets of

parameters in the model with fundamentals and adjoints. The first example on the left shows a

generic point where there are only two narrow regions of cu that lead to an acceptable electroweak

breaking vacuum. The continuous line shows the result of the minimization of the full potential

and the dashed line shows our approximation for regions where sin ṽ/fπ is small. In the left plot

for −0.46 <∼ cu3
<∼ 0.46 the minimum of the potential is at ṽ = πfπ/2, while for cu3

<∼ − 0.47 and

cu3
>∼ 0.47 the minimum is at ṽ = 0. In the case of ṽ = πfπ/2, electroweak symmetry is maximally

broken mW = gf/2, whereas for ṽ = 0, electroweak symmetry is unbroken (mW = 0). In both

cases there are massless fermions in the spectrum. For −0.47<∼ cu3
<∼ − 0.46 and 0.46<∼ cu3

<∼ 0.47

there is a minimum at intermediate values of ṽ/fπ, yet an additional tuning is required to arrive at

ṽ/fπ ≪ 1. For ṽ/fπ < 0.45 we find −0.464 < cu3
< −0.462 and 0.464 < cu3

< 0.466. In this case

one needs to tune cu to more than a percent level to get successful electroweak symmetry breaking.

The right plot shows the same for carefully chosen values of the input parameters, where the local

tuning is more modest. In this best case scenario we can have a realistic electroweak symmetry

breaking minimum for the region −0.21 < cu3
< −0.13 or 0.22 < cu3

< 0.31. The parameters

chosen for this plot are R′/R = 1016,1/R′ = 1.5TeV and cQ3
= 0.42, cd3

= −0.56, m̃u = 5, m̃d = 1,

M̃u = 0, r = 1 (right: cQ3
= 0.1, cd3

= −0.56, m̃u = 1, M̃u = −0.5, r = 0.47).

Figure 5: This plot shows the local tuning t for the model with adjoints and fundamentals. The

orange line is a fit to a quadratic polynomial for which we find t ∼ 1

4
ǫ2.

– 22 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
8

Figure 6: Left panel: the dependence of the Higgs mass on 1/R′ for a variety of input parameters

in the model with spinors that give successful electroweak symmetry breaking with points selected

to give the top mass in the physical range. Right panel: the correlation between the top and the

Higgs masses. Orange (x), blue (o), and green (*) points correspond to ǫ < 0.3, 0.3 < ǫ < 0.4 , and

0.4 < ǫ.

find any point with a sufficiently heavy Higgs mass. Including the bottom improves the

situation because for the spinorial representation there is also a light KK mode in the

bottom sector.7 However, it is exactly this state that is responsible for the large shift in

the Zbb̄ vertex. The fine tuning in the top sector is somewhat stronger for the spinorial

case than for the fundamental+adjoint discussed above. Once we impose the fine-tuning in

the input parameters of the theory, we still need to make sure that the Higgs is sufficiently

heavy. Most of the time the top is too heavy. The reason behind this is that there is a very

strong correlation between the Higgs and the top masses in this model. These correlations

between the Higgs mass and 1/R′ and mtop are summarized in figure 6.

4.1 Constraints from electroweak precision tests

Apart from yielding the correct electroweak breaking vacuum, phenomenologically accept-

able GHU models must pass stringent electroweak precision tests [35, 27]. Since SO(5)

models are endowed with custodial symmetry, there is no tree-level constraints from the T

parameter. The S parameter however is an issue. The expression for the S parameter (for

vanishing brane kinetic terms) is given by [17]

S = 4πv2

[

(
∫ R′

R a)(
∫ R′

R a−1)2 −
∫ R′

R a(
∫ R′

z a−1)2
∫ R′

R a−1

]

≈ 3πv2R′2

2
(4.25)

Demanding S < .2 yields the bound R′−1 > 1.2TeV. This implies that the lightest gauge

boson KK modes have masses ∼ 2.4R′−1 ∼ 3TeV.

Another potentially dangerous contributions to the electroweak observables are the

corrections to the ZbLbL coupling that is measured with the .25% accuracy. There are

two potential sources of deviations in the Zbb̄ couplings: mixing of the zero mode fermions

7We thank Roberto Contino for discussions on this point.
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(after EWSB) with KK states of equal electric but different SU(2)L×U(1) charges, and

mixing among the gauge bosons.

We first estimate the contribution of the fermion mixing effect after EW breaking.

Since the b gains a mass after EWSB, in principle one can no longer use the zero mode

wave functions. Most of the time, these corrections are of order (mbR
′)2, and so can be

safely ignored. However, in the spinorial model one encounters order (mtR
′)2 corrections.

The leading effect of EWSB will be to twist the zero mode wave functions between the L

and R multiplets of a bulk spinor via the Wilson line matrix. The effect of this twisting

(for simplicity, we set M̃u = M̃d = 0) will be that the left handed bottom quark will end

up partly living in the down-type component of χbc
u
. The reason why there is a component

in χbc
u

(but not in χbc
q

or χbc
d
) is that the UV brane boundary conditions only allow a non-

vanishing component in this this mode. This non-vanishing component in χbc
u

will give the

leading correction to the Zbb̄ vertex. The coupling of the zero mode of Z (in the limit it

is flat) is given by gZff̄ ∼ (T3L − sin2 θQ). Since the electric charges of all components

that mix are the same the only correction comes from the deviation in the coupling to T3L,

which in our case is due to the fact that the χbc
u

component couples to T3R and not to T3L.

So the relative deviation can be estimated to be (where s2 = 1 − c2 = sin2 v
2f ).

δgZbL b̄L

gZbLb̄L

∼ sin2(ṽ/2f)m̃2
u

f2
u

[

1
f2

q
+ m̃2

u

f2
u

+
m̃2

d

f2

d

] (4.26)

This expression can be related to the formula for the top mass, and so we find

δgZbb̄

gZbb̄

∼ (mtopR
′)2

f2
uf

2
−u

∼ (mtopR
′)2

(1 − 4c2u)
(4.27)

For the range of interest R′ ∼ 1 − 2TeV and |cu| < 1/2 we will find a correction that is

always at least a percent, and cannot be removed. For the other two models the effect does

not occur due to the custodial protection proposed in ref. [18].

We move to the gauge contribution to the Zbb vertex. That correction can be calcu-

lated from the formula

δgZbLbL

gZbLbL

= m2
Z

∫ R′

R
(z/R)−2cq



−
∫ z

R
z′ log(z′/R) +

T 3
R − g2

g′2Y

T 3
L − g2

g′2
Y

(∫ z

R
z′ log(R′/R)

)





(4.28)

We know from the analysis of the Higgs potential that we need cq < 1/2. For generic

left and right quantum numbers of bL, the result is of order m2
ZR

′2 log(R′/R), that is

enhanced by the large logarithm. This would lead to more stringent bounds than those

from the S parameter. However, in the models where bL is embedded in the bifundamental

representation with T 3
L = T 3

R there is a cancellation of the large logs and the result is given

by
δgZbLbL

gZbLbL

≈ m2
ZR

′2

4

(

1 − 4

(3 − 2cq)2

)

(4.29)

This is below the experimental sensitivity even for R′ = 1TeV.
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5. Flavor in GHU

We begin our study of the flavor structure of GHU models. In this section we present a

detailed discussion for the model of section 3.2, with each SM generation embedded in two

fundamental and one adjoint SO(5) multiplet. The other two models lead to a very similar

flavor structure, and we will later comment on the differences.

5.1 Fermion masses and mixing

We start by discussing the zero modes before EW breaking produces their mass terms.

One difference with respect to the standard RS scenario is the presence of the IR boundary

mass terms. These do not give masses to the zero modes, but imply that the zero modes

are embedded in several bulk multiplets. In particular, the zero mode quark doublets qL
are embedded in all Ψq,u,d in eq. (3.10), while the up-type quark singlets uR lives in Ψq,u.

On the other hand, the down-type quark singlets dR lives only in Ψd. We write

qq(x, z) → χqq(z)qL(x) qq(x, z) → χqu(z)qL(x) qd(x, z) → χqd
(z)qL(x) (5.1)

uc
u(x, z) → ψuc

u
(z)uR(x) uc

q(x, z) → ψuc
q
(z)uR(x) dr(x, z) → ψdr

(z)dR(x) (5.2)

Recall that we drop the generation index, and qL, uR, dR are understood to be three-

vectors in the generation space. The zero-mode profiles χ(z), ψ(z) are 3x3 matrices χq =

diag(χq1
, χq2

, χq3
) that determine how much of the zero mode resides in each 5D fermion.

Solving the equations of motion and the boundary conditions we find the left-handed

profiles:

χqq(z) =
1√
R′

( z

R

)2 ( z

R′

)−cq

fq

χqu(z) =
1√
R′

( z

R

)2 ( z

R′

)−cu

m̃†
ufq

χqd
(z) =

1√
R′

( z

R

)2 ( z

R′

)−cd

m̃†
dfq (5.3)

where fq = diag(f(cq1
), f(cq2

), f(cq3
)) and f(c) were defined in eq. (2.6). Similarly, the

zero mode profiles for the right handed up-type fields are given by

ψuc
u
(z) =

1√
R′

( z

R

)2 ( z

R′

)cu

f−u

ψuc
q
(z) = − 1√

R′

( z

R

)2 ( z

R′

)cq

M̃uf−u, (5.4)

Finally, the down-type zero modes are contained only in the adjoints:

ψdr
(z) =

1√
R′

( z

R

)2 ( z

R′

)cd

f−d . (5.5)

The overall normalization has been chosen such that we recover the usual normalized zero

modes eq. (2.5) in the limit when the boundary masses are set to zero. In this form, our

profiles closely resemble the corresponding formulae in the standard RS set-up. However,
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in this basis, the kinetic terms for the zero modes are not diagonal. This kinetic mixing is

parameterized by the Hermitian 3 by 3 matrices

Kq = 1 + fqm̃uf
−2
u m̃†

ufq + fqm̃df
−2
d m̃†

dfq,

Ku = 1 + f−uM̃
†
uf

−2
−q M̃uf−u,

Kd = 1, (5.6)

For example, for the doublet zero modes the kinetic term is given by iq̄L(x)Kq∂/qL(x). The

kinetic mixing is inevitable in GHU models: since all the SM flavor mixing must originate

from non-diagonal terms in the boundary mass terms, at least the matrix Kq must be

non-diagonal. This is an important difference with respect to the original RS set-up that

will introduce additional contributions to flavor-violating processes.

In GHU, the fermion masses originate from the bulk kinetic terms Ψ̄iDMΓMΨ, where

Dz → ∂z−ig5Aa
zT

a and T a are the SO(5) generators appropriate for a given representation.

When Az acquires a vev it produces a mass term connecting the quarks living in the same

SO(5) multiplet. For the fundamental representation, the Wilson line marries the two up

quarks in the bifundamental to the singlet up quark:

(

R

z

)4 g∗v

2

√
2z

R′ u
c(u− ũ) (5.7)

while for the adjoint representation, it couples the triplets to the bifundamental, for exam-

ple
(

R

z

)4 g∗v

2

√
2z

R′ (dl − dr)dd (5.8)

Plugging in the zero mode profiles we find for the mass matrix (in the basis were the

kinetic terms are not diagonal)

mu =
g∗v

2
√

2
fq(m̃u − M̃u)f−u

md =
g∗v

2
√

2
fqm̃df−d (5.9)

To obtain the actual masses and mixing angles one needs to first diagonalize the kinetic

mixing terms and rescale the fields. We decompose Ka = VaNaV
†
a for a = q, u, d, where

N is a positive diagonal matrix and V a unitary matrix, and we define the corresponding

Hermitian matrix Ha = VaN
−1/2
a V †

a . The Hermitian rotation of the zero modes, qL →
HqqL, uR → HuuR, brings the kinetic terms to the canonical form. The mass matrices

rotate into

mSM
u =

g∗v

2
√

2
Hqfq(m̃u − M̃u)f−uHu

mSM
d =

g∗v

2
√

2
Hqfqm̃df−d. (5.10)

In the next step we decompose, as usual, the up and down mass matrices as mSM
u,d =

UL u,dmu,dU
†
R u,d, and we perform a unitary rotation of the zero mode quarks so as to

diagonalize the mass matrix, dL,R → UL,R ddL,R, uL,R → UL,R uuL,R .
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The flavor structure following from 5.10 is very similar to that of the ordinary RS model

with anarchic flavor structure, cf. (2.8). The main difference between (5.10) and (2.8) is

the appearance of the extra Hermitian matrices Ha that originate from the kinetic mixing.

Note that, since Na the eigenvalues of the kinetic mixing matrices (5.6), all entries of Na

are very close to 1 except maybe for the third generation. For this reason, the hierarchical

structure of the mass matrix will turn out to be very similar to that in RS.

The quark masses that follow from (5.10) are as usual, approximately equal to the

diagonal elements. They can be estimated by

mu ∼ g∗v

2
√

2

(m̃u − M̃)fqf−u
√

(

1 +
f2

q m̃2
u

f2
u

+
f2

q m̃2

d

f2

d

)

(

1 +
f2

−uM̃2

f2
−q

)

md ∼ g∗v

2
√

2

m̃dfqf−d
√

(

1 +
f2

q m̃2
u

f2
u

+
f2

q m̃2

d

f2

d

)

(5.11)

where m̃u,d, M̃ here denotes the typical amplitude of the entries in the corresponding mass

matrix. As in the standard RS, the mass hierarchies are set by fq, f−u, f−d and g∗/2

plays the similar role to the Yukawa coupling Y∗. The coupling g∗ is however related to

the experimentally measured weak coupling, see eq. (3.2), and cannot be varied, unless

we consider large UV brane kinetic terms. Another difference is the dependence on the

boundary masses that enters both the numerator and the denominator. The latter may be

significantly different than 1 only when fx ∼ 1, which is the case for the third generation.

In that case m̃u,d, M̃ saturate: further increasing it does not increase the mass.

We turn to discussing the mixing angles and how are they affected by the kinetic

mixing. Consider the doublet mixing matrix Kq. fq is hierarchical, fq1
≪ fq2

≪ 1, fq3
∼ 1,

while fu,d’s are all of order one (since it is f−u,d that sets the mass hierarchy). Thus,

Kq ∼ δij + m̃2fqi
fqj

, where we denote m̃2 = m̃2
u + m̃2

d. It follows that Nq ∼ (1, 1, 1 + m̃2)

and (Vq)12 ∼ m̃2fq1
fq2

, (Vq)13 ∼ m̃2fq1
/(1 + m̃2), (Vq)23 ∼ m̃2fq2

/(1 + m̃2). At the end

of the day, the left hierarchy is set by the matrix fqHq (rather than fq as in RS) whose

diagonal elements are of the form

Hqfq ∼







fq1

fq2

fq3
(1 + f2

q3
m̃2)−1/2






, (5.12)

The off-diagonal terms in the above matrix are irrelevant for the following discussion. We

can see that the corrections coming from the kinetic mixing do not change the hierarchy

of fq. There are, of course, O(1) corrections in the actual numerical values of the f ’s that

are required to reproduce the mass and mixing hierarchies, but their orders of magnitude

are unchanged so that implementation of flavor hierarchies is analogous as in RS. The only

parametric difference between fq and eq. (5.12) is that the third eigenvalue gets suppressed

by 1/m̃ as soon as m̃ is larger than 1. We keep track of that effect because, as the study

of the Higgs potential shows, the interesting parameter space with successful electroweak
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breaking and the large enough top quark mass extends to m̃ ∼ few. This parametric

dependence feeds into the left rotation that diagonalize the SM mass matrix,

(ULu,d)12 ∼ fq1

fq2

(ULu,d)13 ∼ fq1

fq3

(1 + f2
q3
m̃2)1/2 (ULu,d)23 ∼ fq2

fq3

(1 + f2
q3
m̃2)1/2 (5.13)

The consequence is that the relation between fq and the CKM angles is slightly modified,

(1 + m̃2)1/2fq1
∼ λ3, (1 + m̃2)1/2fq1

∼ λ2, where λ is the Cabibbo angle.

By the same token,

Huf−u ∼







f−u1

f−u2

f−u3
(1 + f2

−u3
M̃2)−1/2






, (5.14)

and the elements of the right rotation matrix for the up-type quark are

(URu)12 ∼ f−u1

f−u2

(URu)13 ∼ f−u1

f−u3

(1 + f2
−u3

M̃2)1/2 (URu)23 ∼ f−u2

f−u3

(1 + f2
−u3

M̃2)1/2

(5.15)

Finally, the elements of the right rotation matrix for the down-type quark are not affected

by the kinetic mixing,

(URd)12 ∼ f−d1
/f−d2

(URd)13 ∼ f−d1
/f−d3

(URd)23 ∼ f−d2
/f−d3

(5.16)

5.2 Flavor constraints

We are ready to evaluate the flavor constraints in the GHU models that originate from a

tree-level exchange of the KK gluons. To this end, we need to compute the couplings of

the SM down-type quarks to the lightest KK gluon,

gij
L d̄

i
LγµGµ(1)d

j
L + gij

R d̄
i
RγµGµ(1)d

j
R (5.17)

As before, we introduce the diagonal matrix gx ≈ gs∗(− 1
log R′/R + γ(cx)f2

x), x = q,−u,−d,
that approximate the couplings of quarks in each 5D multiplets to the lightest KK gluon.

The complication inherent to the GHU models is that the zero mode quarks are contained

in several 5D multiplets. This is already one source of off-diagonal couplings. Furthermore,

on top of the unitary rotation that diagonalizes the SM mass matrix, the off-diagonal terms

are affected by the Hermitian rotation that diagonalizes the kinetic terms. At the end of

the day the couplings can be written as

gij
L ≈

[

U †
L dHq

(

gq + fqm̃uf
−2
u gum̃

†
ufq + fqm̃df

−2
d gdm̃

†
dfq

)

HqUL d

]

ij

gij
R ≈

[

U †
R dg−dUR d

]

ij
(5.18)

Compared to the RS formula (2.16), the doublet quark off-diagonal couplings receive many

additional contributions. In spite of that, the RS-GIM mechanism is still at work, in the
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sense that the off-diagonal terms are always multiplied by the hierarchical matrix fq. The

flavor-changing couplings are proportional to

gds
L ∼ gs∗(1 + m̃2)fq1

fq2

gdb
L ∼ gs∗

1 + m̃2

(1 + f2
q3
m̃2)1/2

fq1
fq3

gsb
L ∼ gs∗

1 + m̃2

(1 + f2
q3
m̃2)1/2

fq2
fq3

(gR,d)ij ∼ gs∗f−di
f−dj

(5.19)

We can now estimate the size of the FCNC four-fermion operators relevant for the for

the Kaon mixing. The LL operator is, just like in RS, suppressed by the CKM matrix

elements,

C1
K ∼ 1

6M2
G

g2
s∗|V ∗

tsVtd|2f4
q3

(1 + m̃2)2

(1 + f2
q3
m̃2)2

(5.20)

This bound has almost the same form as in the RS case, except for the last factor that

depends on m̃. In RS one usually takes fq3
∼ 0.3 (that is cq3

close to one half) to further

suppress the LL operator. In the case at hand, using the approximate expression for the

top mass, we can relate (for f−u3
∼ 1)

fq3

√

1 + m̃2

1 + f2
q3
m̃2

∼ 2
√

2mt

g∗v

√
1 + m̃2

√

1 + M̃2

m̃u − M̃
(5.21)

Taking m̃u,d ∼ M̃ ∼ 1 we can rewrite our estimate as

C1
K ∼ 1

(5 · 104 TeV)2

(

3TeV

MG

)2

(5.22)

which shows that a 3TeV KK gluon satisfies the bound listed in table 2.

On the other hand, the LR contribution is

C4
K = −3C5

K ∼ 1

M2
G

g2
s∗
g2
∗

8mdms

v2

1 + m̃2

m̃2
d

(5.23)

where this time we related f ’s to down-type quark masses via fqi
f−di

∼ 2
√

2mi
d/g∗vm̃d.

Again, this estimate is very similar as in the RS case, with Y∗ replaced by g∗/2. The

new parametric difference is the factor (1 + m̃2)/m̃2
d, which can be traced back to the

kinetic mixing. This factor may enhance (but never suppress) the coefficient, if m̃d < 1 or

m̃u > m̃d. In consequence (when boundary kinetic terms are ignored),

C4
K ∼ 1

(1.5 · 104 TeV)2

(

3TeV

MG

)2

(5.24)

The numbers refer to the case when the boundary kinetic terms at the TeV scale are small,

so that g∗ ∼ g log1/2(R′/R) ∼ 4, gs∗ ∼ gs log1/2(R′/R) ∼ 6. We can see that ΛImC4

K
is a

– 29 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
8

Figure 7: Scan of the effective suppression scale of ImC1K (left panel) ImC4K (right panel) and in

the scenario with adjoint and fundamental bulk fields. In the left panel points with m̃u > 3.5 are

red (*) and points with m̃u < 1.5 are black (+). All the points give the correct low-energy spectrum

but most of the points with mG < 30TeV fail to satisfy the ImC4K bound of Λ > 1.6 · 105 TeV.

The blue line is a linear fit of the MG dependence.

Figure 8: Scan of the effective suppression scale of |C4

Bd
| (left panel) |C4

Bs
| (right panel) and in

the scenario with adjoint and fundamental bulk fields. All the points give the correct low-energy

spectrum and points with mG > 5TeV mostly satisfy the bounds. The blue lines are linear fits of

the MG dependence.

factor of ∼ 11 too small for a 3TeV KK gluon. To satisfy the bound ΛImC4

K
> 16 · 104 TeV

(see table 2) would require a KK scale of about 33 TeV.

As in RS, we can change this estimate by playing with the boundary kinetic terms for

SU(2)L and SU(3)C . Assuming a large bare UV coupling (small brane kinetic term) for

SU(3)c and including the one-loop QCD running we can decrease gs∗, thus relaxing the

bound by a factor of two. On the other hand, we could make the coupling g∗ larger by

adding a large brane kinetic term for SU(2)L, that is to pick r > 1. In the best of all

worlds, assuming gs∗ ∼ 3 and g∗ ∼ 4π (the latter implies lack of perturbative control over

the Higgs sector) we could lower the bound down to 5 TeV. In a calculable framework it is

not possible to lower the bound below 10 TeV. These estimates demonstrate that the GHU

framework with fully anarchic flavor is not a plausible scenario.
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5.3 Numerical scan

We have verified the above estimates of the flavor bounds by an extensive numerical scan

over the parameter space of the model. Our first aim is to find realistic electro-weak

symmetry breaking minima of the effective potential. We are only interested in points

with a sizable gap between the EW scale and the scale of the KK modes (v/fπ <∼ 0.3).

The parameters related by EWSB are: the bulk masses of the third generation cq3
,cu3

,cd3
,

the size of the brane masses m̃u, m̃d, M̃u, M̃d, the KK scale 1/R′. We keep the hierarchy

R/R′ = 10−16 fixed. Contrary to the RS case, we are not free to pick any combination,

since most choices do not lead to EWSB satisfying our criteria. As we have discussed, v/fπ

is very sensitive to qq3
, cu3

, see e.g. figure 4. We therefore first randomly generate a set of

parameters with cq3
∈ [0.2, 0.48], 1/R′ ∈ [900, 12500] GeV, c−d3

= −0.55, |m̃u| ∈ [0.5, 5],

|m̃d| ∈ [0.5, 2], and r ∈ [0, 0.8]. (For simplicity, we have set M̃u = M̃d = 0). Knowing

R,R′ and r, we determine v/fπ from the condition to reproduce mW , see (3.5). We then

find a cu3
such that the minimum of the potential really is at the value of v/fπ specified

before. Finally, we want the theory to be calculable, which puts an upper bound on the

bulk SO(5) coupling g∗. This can be equivalently expressed as a bound on the number of

colors of the dual CFT, see eq. (3.1), and we require NCFT >∼ 5.

The next step is to calculate the SM masses, mixing angles and KK FCNCs. Given

the size of cq3
,cu3

,cd3
and of m̃u and m̃d we can determine the bulk masses of the first

two generations. First, cq1
and cq2

are fixed since left rotations (5.13) need to have the

same hierarchy as the CKM. The remaining bulk masses cu1,2
,cd1,2

can be fixed using (2.13)

requiring the mass eigenvalues to match the SM at TeV scales.

Now we randomly generate complex 3 × 3 matrices m̃u, m̃d with eigenvalues approxi-

mately of the size as those used in the calculation of the potential above. Using (5.10) we

then calculate the effective mass matrices mSM
u,d . These mass matrices only approximately

reproduce the SM. In order to have a completely realistic set of parameters we need to

parameterize the deviation from the SM and reject those m̃u,d which deviate too much.

For this purpose we have defined matrix norms that measure the distance between the

generated and the physical values at 3 TeV. We calculate the distance between

• The mass eigenvalues to the the SM running masses at 3TeV, see table. 1.

• The moduli of the generated CKM to

|VCKM| ≈







0.97 0.226 0.0035

0.226 0.97 0.04

0.008 0.04 1






, (5.25)

which we took from a recent tree level determination [36].

• The amount of CP violation to the SM Jarlskog invariant [37]

J ≈ 3 · 10−5 (5.26)

We finally accept only those random matrices m̃u,d for which the maximal relative distance

of any constraint is below 30%.
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The results of the scan are displayed in figure 7. Most of the points with mG < 30 TeV

fail to satisfy the ImC4K bound of Λ > 1.6 · 105 TeV, in agreement with our analytical

estimates. Just like in the RS case this bound is somewhat dependent on the assumption

that one makes on the boundary kinetic terms for the gluon. For the two extreme cases

the numerical values for the supression scales are the following. In the worst case when the

theory is barely perturbative, the bound is enhanced to about 54 TeV, while in the best

case, with no bare brane kinetic terms to bound is reduced to about 17 TeV. We conclude

that the flavor constraints on the warped models with a pseudo-Goldstone Higgs are even

stronger that that in the standard RS with a TeV brane localized Higgs.

In the remainder of this section we summarize the flavor constraints for the other two

GHU models considered in this paper. The short summary is that in none of the models

is the RS flavor bound relaxed, but rather strengthened.

5.4 Fermions in the spinorial

For the model with each generation of the SM fermions embedded in 3 SO(5) spinors

the parameter space includes an additional boundary mass matrix M̃d that introduces the

kinetic mixing also to the d-singlet quark sector. The kinetic mixing matrices are given by

Kq = 1 + fqm̃uf
−2
u m̃†

ufq + fqm̃df
−2
d m̃†

dfq,

Ku = 1 + f−uM̃
†
uf

−2
−q M̃uf−u,

Kd = 1 + f−dM̃
†
df

−2
−q M̃df−d, (5.27)

The SM up and down mass matrix take the form

mSM
u,d =

g∗v

4
Hqfq(m̃u,d − M̃u,d)f−u,dHu,d. (5.28)

There is an additional factor of 1/
√

2 that is a group theoretical factor of the spinorial

SO(5) representation. The kinetic mixing induced by M̃d feeds into the right-rotation

unitary matrix for the down quarks

(URd)12 ∼ f−d1

f−d2

(URd)13 ∼ f−d1

f−d3

(1 + f2
−d3

M̃2)1/2 (URd)23 ∼ f−d2

f−d3

(1 + f2
−d3

M̃2)1/2

(5.29)

but the effect is negligible (unless M̃ is very large) because f−d3
≪ 1 to account for

mb/mt ≪ 1. The only difference in flavor constraints is the consequence of the 1/
√

2 factor

in the SM mass matrix, which makes the LR flavor bounds a factor of
√

2 more stringent.

5.5 Fermions in four fundamentals

The model with four fundamental representation per generation contains yet another ma-

trix θ that is a source of flavor violation. The kinetic mixing matrices are given by

Kq = 1 + fqu(R′/R)cqu θ†(R′/R)−cqdf−2
qd

(R′/R)−cqd θ(R′/R)cqufqu + fqum̃
†
uf

−2
u m̃ufqu

+fqu(R′/R)cqu θ†(R′/R)−cqd m̃df
−2
d m̃†

d(R
′/R)−cqd θ(R′/R)cqufqu,

Ku = 1 + f−uM̃
†
uf

−2
−qu

M̃uf−u,

Kd = 1 + f−dM̃
†
df

−2
−qd

M̃df−d, (5.30)
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while the mass terms are

mSM
u =

g∗v

2
√

2
Hqfqu(m̃u − M̃u)f−uHu

mSM
d =

g∗v

2
√

2
Hqfqu(R′/R)cqu θ†(R′/R)−cqd (m̃d − M̃d)f−dHd (5.31)

There are several new possible flavor effects here. First of all, the mixing matrix θ shows,

and it is accompanied by the large factor (R′/R)cqu on the outside. This factor perfectly

counteracts the hierarchical suppression generated by the matrix fq. In consequence, as

long as θ is an arbitrary anarchic matrix, we definitely lose the RS hierarchic structure of

the fermion mass matrix. The origin of this is easy to understand. Here we have two copies

of the left handed doublets, and we are removing one combination with an additional right

handed doublet on the UV brane. If the matrix θ is anarchic, then we introduce a large

flavor violating effect into the elementary sector, that is unsuppressed by the mixing of

elementary and composite states.

In order for the UV physics to maintain an SU(3)Q flavor symmetry for the doublets

we need to assume that θ is, to a good approximation, proportional to the unit matrix.

In the following we set θ → Θ13x3 in all expressions, where Θ is a c-number. This is

in fact a similar assumption as the one implicitly makes in RS and the other two GHU

models: the elementary sector is flavor symmetric (that is there are no large flavor violating

kinetic mixing terms on the Planck brane), and only the CFT gives rise to flavor violations.

With this ansatz, the flavor structure becomes very similar to that in the spinorial model.

There is still another new effect, however, which is the presence of two sets of cq. As a

consequence, in the expression for mSM
u,d the left hierarchy is not set by the same functions:

for the up-type masses it is set by fcqu
while for the down-type by fcqu

(R′/R)cqu−cqd . This

effect can be used as an alternative way to explain the large isosping breaking in the third

generation. Instead of taking f−d3
≪ 1, that is assuming bR is mostly elementary, we can

choose f−d3
∼ 1 and cq3

u
< cq3

d
to obtain mb/mt ≪ 1. Unfortunately, this new avenue does

not seem to lead to suppressing dangerous four-fermion operators. The coefficients C4
K can

be estimated as

C4
K ∼ (R′/R)

(c
q1
d
−cq1

)+(c
q2
d
−cq2

) 1

M2
G

g2
s∗
g2
∗

8mdms

v2

1 + m̃2

m̃2
d

(5.32)

where cqi
= min(cqi

u
, cqi

d
). For c

q1,2
u

< c
q1,2
d

we are able to enhance the coefficient C4
K , but

it’s not exactly what we want.

6. Conclusion

In this paper we studied flavor physics in the framework of 5D warped GHU models that

provide a dual realization of a composite pseudo-Goldstone Higgs. This is an extension of

the standard RS scenario, that makes the electroweak symmetry breaking dynamical and

fully calculable.

The flavor structure of GHU models turns out to be quite similar to that in RS. The

hierarchical structure of the quark masses and the CKM matrix appears as a consequence
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of different localization of zero modes in the extra dimension. The RS-GIM mechanism

is operating, in the sense that the coefficients of effective four-fermion ∆F = 2 operators

induced by the tree-level KK mode exchange are suppressed by the small off-diagonal CKM

matrix elements (LL operators), or by the light quark masses (LR operators).

The GHU models introduce, however, new contributions to flavor violation that are

of the same order of magnitude as those in RS. The reason is that the larger set of local

symmetries (that is crucial to realize the Higgs as a pseudo-Goldstone boson) imply a

different realization of the zero-mode fermionic sector. In particular, the zero modes must

be embedded in more than one bulk multiplet. We call it the kinetic mixing because in

the original flavor basis in 5D it shows up as the generation mixing via the zero modes

kinetic terms. This effect is controlled by the IR boundary masses - the same Lagrangian

parameters that control also the mass matrix. The kinetic mixing feeds into the effective

four-fermion ∆F = 2 operators, parametrically enhancing its coefficients by a factor of few.

Just like in RS, the strongest bound on the KK scale comes from the imaginary part

of the LR (sd)2 operator, that affects CP violation in the kaon sector. We find that for

anarchic boundary mass matrices, the generic bounds on the lightest KK gluon mass is of

order 30TeV. Such a large KK scale of course undermines the motivations for the GHU

models. This implies that GHU does not make sense without additional flavor symmetries.

There are several ways one could suppress the dangerous FCNC contributions (apart from

assuming accidental cancelations). For example in the models of [39] one imposes a bulk

flavor symmetry, and all mixing originates from Planck brane localized kinetic mixing

terms. As a result one can construct models where all tree-level FCNC’s are absent (a

genuine GIM mechanism), but of course in this case one gives up on the explanation of

the fermion mass hierarchy. A recent proposal suggests to truncate the bulk at a scale

of about 103 TeV which softens the flavor problem by effectively reducing gs∗ [41]. The

obvious price to pay is giving up on an explanation for the hierarchy between weak and

Planck scale. An intermediate solution could be to try to construct flavor models that do

explain both hierarchies, but have some partial flavor symmetries left over [25, 40]. One

possible ansatz that would alleviate the constraints while still giving rise to the hierarchies

would be to assume that the boundary masses in the down sector m̃d, M̃d are proportional

to the unit matrix, so that all the CKM mixing originate from non-diagonal elements in

m̃u, M̃u. This suppresses the right rotation matrix UR d, so that the LR operator is also

suppressed.

Acknowledgments

We would like to thank Kaustubh Agashe, Roberto Contino, Christophe Grojean, Sebastian
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A. KK gluon sums

In this appendix we present analytical formulas that allow one to include the contribution of

the entire KK gluon tower to the effective four-fermion operators. We start with couplings

of the n-th KK gluon to the quark eigenstates

gij
L,nq̄

i
LγµG

µ(n)qj
L + gij

R,nq̄
i
RγµG

µ(n)qj
R (A.1)

The couplings are given by

gij
L,n = gs∗R

1/2

∫ R′

R
fn(z)hij

L (z) gij
R,n = gs∗R

1/2

∫ R′

R
fn(z)hij

R(z) (A.2)

Above, a(z) is the warp factor (that we keep arbitrary here), fn(z) is the profile of the

n-th KK gluon, and g5 is the dimensionful bulk coupling of SU(3) color. For vanishing

brane kinetic terms, the SM strong coupling is given by g2
s = g2

s∗R/L, where L =
∫ R′

R a(z).

The quark bilinear profiles hij
L,R(z) are 3x3 matrices in the mass eigenstate basis. They are

related to the fermionic profiles:

hL(z) = a4(z)V †
L

∑

a

χ†
qa

(z)χqa(z)VL hR(z) = a4(z)V †
R

∑

a

ψ†
qa

(z)ψqa(z)VR (A.3)

where the sum goes over all bulk multiplets in which the quark eigenstates is embedded,

and VL,R collectively denote all Hermitian or unitary rotations that relate the original

flavor basis to the mass eigenstate basis. By orthogonality, the bilinear profiles satisfy
∫ R′

R hij
L,R = δij .

The coefficients of the effective four-fermion operators are set by the sums of the form

Σij,kl
LR =

∞
∑

n=1

gij
L,ng

kl
R,n

m2
n

(A.4)

Strangely enough, with the help of the methods of ref. [42] the sum can be evaluated for a

general warp factor (even though there is no closed expression for particular mn and gn).

The strategy is to 1) insert the integral expression for the couplings into the sum, 2) use

the integrated equation of motion for fn(z), and 3) use the completeness relation for fn(z).

When the smoke clears, one is left with

Σij,kl
LR = g2

s

[

L

∫ R′

R
a−1(z)(

∫ z

R
hij

L (z′))(

∫ z

R
hkl

R (z′)) (A.5)

+δij

∫ R′

R
hkl

R (z)

∫ z

R
a−1(z′)

∫ z′

R
a(z′′) + δkl

∫ R′

R
hij

L (z)

∫ z

R
a−1(z′)

∫ z′

R
a(z′′)

]

−g2
sδ

ijδkl

[

∫ R′

R
a−1(z′)

∫ z′

R
a(z′′) + L−1

∫ R′

R
a(z)

∫ z

R
a−1(z′)

∫ z′

R
a(z′′)

]

The result is quite complicated, but it simplifies considerably for flavor changing sums,

which are of primary interest here:

Σij,kl
LR = g2

sL

∫ R′

R
a−1(z)

(

∫ R′

z
hij

L (z′)

)(

∫ R′

z
hkl

R (z′)

)

i 6= j k 6= l (A.6)
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Thus, the whole sum is expressed by simple integrals of the warp factor and the fermion

profiles. In particular, for AdS geometry we take a(z) = R/z, and the fermionic profiles

from eq. (2.5). The inverse of the AdS warp factor is sharply peaked towards IR. Therefore

the integrals depend mainly on the IR value of the fermionic profiles, that also sets the

fermion masses and mixing angles. This is the origin of the RS-GIM mechanism.

The coefficients of the operators relevant for the kaon sector are given by

C1K =
1

6
g2
s log(R′/R)

∫ R′

R
z

(

∫ R′

z
hsd

L (z′)

)(

∫ R′

z
hsd

L (z′)

)

C4K = −g2
s log(R′/R)

∫ R′

R
z

(

∫ R′

z
hsd

L (z′)

)(

∫ R′

z
hsd

R (z′)

)

C5K = −1

3
C4K (A.7)

In RS, the bilinear profiles of the down-type quarks are given by

hL,d(z) = R′−1U †
L d

(

R′

z

)2cq

f2
qUL d

hR,d(z) = R′−1U †
R d

(

R′

z

)−2cd

f2
−dUR d (A.8)

Here, the non-diagonal elements are only due to the left and right unitary rotations that

diagonalize the SM mass matrix.

For the GHU model with two fundamentals and an adjoint, the right-handed down-

quark bilinear profile remains the same, but the left-handed one becomes more complicated

due to the kinetic mixing:

hL,d(z) = R′−1U †
L dHq

[

(

R′

z

)2cq

f2
q + fqm̃u

(

R′

z

)2cu

m̃†
ufq+fqm̃d

(

R′

z

)2cd

m̃†
dfq

]

HqUL d.

(A.9)

This time there are new sources of off-diagonal terms: the boundary masses m̃ and the

Hermitian rotations H.

B. SO(5) generators

B.1 Spinorial

The smallest SO(5) representation is the 4 spinorial. The generators in a convenient basis:

T a
L =

1

2

[

σa 0

0 0

]

T a
R =

1

2

[

0 0

0 σa

]

(B.1)

T a
C =

i

2
√

2

[

0 σa

−σa 0

]

T 4
C =

1

2
√

2

[

0 1

1 0

]

(B.2)
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T a
L and T a

R generate the SO(4) ≡ SU(2)L×SU(2)R subgroup of SO(5) and T â
C are the coset

generators. The T3 generators of the SU(2)L ×SU(2)R subgroup are diagonal in this basis.

This makes transparent how the SU(2)L × SU(2)R quantum numbers are embedded in 4:

Ψ =











q+0

q−0

q0+
q0−











4 = (2,1) ⊕ (1,2) (B.3)

where ± stands for ±1/2. The Wilson-line exponential ei
√

2hT 4

C rotates q±0 into q0± and

vice-versa:

q±0 → cos(h/2)q±0 + i sin(h/2)q0±

q0± → i sin(h/2)q0± + cos(h/2)q±0 (B.4)

B.2 Fundamental

The 10 generators of the fundamental representation in an inconvenient basis:

T a
L,ij = − i

2

[

1

2
ǫabc(δb

i δ
c
j − δb

jδ
c
i ) + (δa

i δ
4
j − δa

j δ
4
i )

]

a = 1 . . . 3

T a
R,ij = − i

2

[

1

2
ǫabc(δb

i δ
c
j − δb

jδ
c
i ) − (δa

i δ
4
j − δa

j δ
4
i )

]

a = 1 . . . 3

T â
C,ij = − i√

2

[

δâ
i δ

5
j − δâ

j δ
5
i )
]

â = 1 . . . 4 (B.5)

The generators are normalized as TrTαT β = δαβ . The T3 generators of SU(2)L × SU(2)R
are non-diagonal in this basis. The quantum numbers of the 5-vector components can be

found as:

Q =
1√
2















q++ + q−−
iq++ − iq−−
q+− + q−+

iq+− − iq−+√
2q00















5 = (2,2) ⊕ (1,1) (B.6)

The Wilson-line transformation exp(i
√

2hT 4
C) rotates (q+−, q−+, q00) into one another:

q+− → 1 + cos(h)

2
q+− +

1 − cos(h)

2
q−+ − i

sin(h)√
2
q00

q−+ → 1 − cos(h)

2
q+− +

1 + cos(h)

2
q−+ + i

sin(h)√
2
q00

q00 → −isin(h)√
2
q+− + i

sin(h)√
2
q−+ + cos(h)q00 (B.7)

B.3 Adjoint

The antisymmetric tensor Φ transforms as Φ → ΩΦΩT . We can represent the tensor as:

Φ = Φa
LT

a
L + Φa

RT
a
R + Φâ

CT
â
c (B.8)
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where T are SO(5) generators in the fundamental representation. The SO(5) commutation

relations

[T a
L, T

b
L] = iǫabcT c

L [T a
R, T

b
R] = iǫabcT c

R [T a
L, T

b
R] = 0 (B.9)

[T a
C , T

b
C ] =

i

2
ǫabc(T c

L + T c
R) [T a

C , T
4
C ] =

i

2
(T a

L − T a
R) (B.10)

[T a
L,R, T

b
C ] =

i

2

(

ǫabcT c
C ± δabT 4

C

)

[T a
L,R, T

4
C ] = ∓ i

2
T a

C (B.11)

imply that ΦL is an SU(2)L triplet, ΦR is an SU(2)R triplet and ΦC is an SU(2)L ×SU(2)R
bifundamental, and the embedding of the quantum numbers is

(3,1) : Φ1
L ± iΦ2

L → (±1, 0) Φ3
L → (0, 0) (B.12)

(1,3) : Φ1
R ± iΦ2

R → (0,±1) Φ3
R → (0, 0) (B.13)

(2,2) : Φ1
C ± iΦ2

C → (±1/2,±1/2) Φ3
C ± iΦ4

C → (±1/2,∓1/2) (B.14)

10 = (3,1) ⊕ (1,3) ⊕ (2,2) (B.15)

The Wilson-line transformation rotates the axial combination of the left and right triplets

into the bifundamental

Φa
L + Φa

R√
2

→ Φa
L + Φa

R√
2

Φa
L − Φa

R√
2

→ Φa
L − Φa

R√
2

cos(h) + Φa
C sin(h)

Φa
C → −Φa

L − Φa
R√

2
sin(h) + Φa

C cos(h) (B.16)
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